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Abstract--A new equation is presented for the evolution of film thickness which, in addition to van der 
Waals dispersive forces and surface tension, includes flow effects arising from surface tension gradients. 
The effect of surfactant is quantified in terms of its adsorption at the liquid-gas interface. A linear stability 
analysis shows that the dynamics of evaporating/condensing thin films in the presence of surfactant 
are entirely different from isothermal films with surfactant and non-isothermal films without surfactant. 
Thus, flows driven by surface tension gradients originating from surfactant concentration variations, 
i.e. Marangoni flows, are in a direction opposite to that of similar flows originating from surface 
temperature variations, i.e. thermocapillary flows. The former usually dominate; they are destabilizing 
for condensing films and stabilizing for evaporating films.. 
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1. I N T R O D U C T I O N  

In flow through porous media, the dominantly-wetting phase fills small-size pores and flows 
along the walls of  larger pores as a continuous thin film. The bulk of  the large pores is occupied 
by less-wetting and non-wetting phases. The wall films are subject to hydrodynamic, surface 
instabilities. Under certain flow conditions (Gauglitz & Radke 1988), and for specific pore 
throat- to-body ratios (Ransohoff et al. 1987), they "snap-off"  to form free films, called lamellae, 
which block the pore-throat  entrance to the incoming non-wetting phase. 

In enhanced oil recovery (EOR) operations which utilize injected gas to displace the oil, 
the problem of an efficient sweep of the reservoir arises since the gas flows preferentially through 
the top of  the formation or through high-permeability zones. One of  the ways of  slowing down the 
advance of  the gas and redistributing it over a larger cross section of  the reservoir is to render part  
or all of  the gas phase discontinuous. To achieve this goal, the lamellae are stabilized by surfactant 
which is injected in the form of  dilute aqueous solutions. The non-uniform gas-in-water dispersion, 
which is stabilized by surfactant in porous media, is called a foam, although its texture and features 
are quite different from those of  common bulk foams outside porous media. 

The wall films (figure l a) are bounded in the transverse direction by the inside pore wall and 
a gas-liquid interface. Their stability is of  primary importance to foam formation. The stability 
of  the free films (figure la), which span the pore and have two gas-liquid interfaces, determines 
the rate of  foam collapse. Film stability is a result of  the interplay of  viscous, capillary and 
intermolecular (disjoint pressure) forces. Variations of  surfactant concentration and temperature 
at the gas-liquid interface add surface-tension gradients to the factors influencing film stability. 
Flows induced by surface-tension gradients due to surfactant excess concentration variations are 
known as Marangoni  flows (Sternling & Scriven 1959); those arising from interfacial temperature 
variations are known as thermocapillary flows (Pearson 1958). 

pore~all gas ~ free film gas " ~  

Figure la. Thin liquid films in a pore, relevant to foam. 
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For surfactants used in EOR operations, the rate-determining process is adsorption at the 
gas-liquid interface (Hirasaki & Lawson 1985). Interfacial temperature variations for foams in 
porous media are usually associated with a lack of thermal equilibrium between the gas and liquid 
phases. Depending on the sign of the temperature difference between the liquid and gas, 
condensation or evaporation occurs. This temperature difference between the liquid and gas ranges 
from the value associated with the pressure difference between these phases [capillary pressure 
(Falls et al. 1988)] and that associated with the temperatures of the injected fluid and the cold 
reservoir. Condensation is expected to increase the stability of thin liquid films; evaporation is 
expected to have the opposite effect. 

A linear stability analysis of thin evaporating and condensing films with surfactant present is 
used as a way of comparing steam-foams to "cold"-gas-foams. Stability analyses are available only 
for evaporating/condensing films with no surfactant (Burelbach et al. 1988) and for isothermal films 
with surfactant (Sharma & Ruckenstein 1988; Prevost & Gallez 1986). 

Free films (films bounded in the direction of their shortest dimension by two gas-liquid 
interfaces) are more difficult to analyze than wall films (films bounded in the direction of their 
shortest dimension by a solid wall and a gas-liquid interface). For a free film, a previous analysis 
(Prevost & Gallez 1986) has shown that there are two modes of film thickness variation: a bending 
mode, in which the two gas-liquid interfaces move parallel to each other in the direction of the 
shortest dimension; and a squeezing mode, in which the same interfaces move antiparallel in the 
direction of the shortest dimension. Only the squeezing mode is considered in their analysis, because 
it is the one that results in rupture. For the purposes of the work presented here, the dynamics 
of a free film are approximated by those of a wall film with thickness equal to half the thickness 
of the free film. 

2. MODEL 

Consider a thin film of a Newtonian liquid, uncharged and laterally unbounded, sandwiched 
between a rigid wall and an interface with a passive vapor (figure 1 b). The dimensions of the film 
are very small, yet large enough compared to molecular length scales to allow a continuum 
description of the flow. Thinning of the film can occur through drainage by capillary suction and/or 
gravity. The film is always subject to surface perturbations originating from external or internal 
disturbances, and the growth of the surface perturbations is controlled by the interaction of surface 
tension and intermolecular forces (disjoining pressure). The assumption is made that the times 
characterizing the growth of surface disturbances are larger than those characterizing film draining. 
For the systems considered in this work, vapor density, viscosity and thermal conductivity 
are substantially smaller than the respective liquid properties. It is assumed that condensation 
or evaporation occurs at the interface due to a constant amount of superheat or subcooling, 
i.e. a temperature difference between the liquid and the vapor. The assumption is made that mass 
transfer due to phase change is negligible. However, momentum and energy transfer due to phase 
change cannot be ignored. 

Following Williams & Davis (1982), the governing equations and boundary conditions are 
non-dimensionalized using the characteristic scales: h0 for length; h2o/V for time; v/ho for velocity; 
and pv2/h~ for pressure (h0 is the average or initial film thickness and v and p are the liquid kinematic 

gas Interface 

iquid z (x,  t) 

Figure lb. Thin wall film with a cartesian coordinate system. 
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viscosity and density, respectively). The dimensionless temperature is defined as ( T -  T , ) IAT ,  

where Ts is the saturation temperature and AT is the difference in the wall or bulk liquid 
temperature and the saturation temperature. In a Cartesian coordinate system (x, z), as in 
figure lb, the flow and heat transfer in the film are described by the following equations (in 
dimensionless form): 

and 

u, + uux + wuz = V2u - (p + ~b)x, 

W t + U W  x " ~  W W  z = V2W - -  (p + ~b)~, 

u x + w z = 0 

[1] 

[2] 

[3] 

1", + uTx + wTz = Pr -I V:T, [4] 

where Pr is the Prandtl number of the liquid, the subscripts denote partial derivatives and 4) is 
the potential for intermolecular dispersive forces (disjoining pressure) given (Ruckenstein & Jain 
1974) as 

~b = ,~ .  [5a] 
n ~ 

Here A0 is defined as 

A H  

Ao = 6nhopv 2, [5b] 

where An is the Hamaker constant. 
Surface tension has a stabilizing influence on the film and the disjoining pressure has a stabilizing 

or destabilizing influence, depending on the sign of AH, i.e. whether the dispersive forces are 
attractive or respulsive. Here, only the case of positive An is considered. 

The boundary conditions at z = 0 for a wall film are 

z = 0 ,  u = w = 0 ;  T = I .  [6] 

The boundary conditions at the liquid-vapor interface are given by (appendix A) 

z = h ,  (u~ + w x ) ( 1 - h 2 ) + 2 ( w ~ - u x ) h x = 3 ( S x + h x S z ) ( l + h 2 )  1/2, [7] 

z = h, 3 2 ..x] , : J  D0 - p  + 2[Wz(1 - h 2) - (u~ + wx)hx](1 + h2) - '  = 3Sh~(1 + h 2~-3n [8] 

z = h, J A  + T~ - hx Tx = 0 [9] 

and 

z = h, h, + J + uhx - w = 0; [10] 

where S = (hoa)/(3pv 2) is the dimensionless surface tension and A = 2 p v / k A T ,  with 2 being 
the latent heat of vaporization. The term J = fl (T[h -- Ts)ho/(pv),  with T]h being the temperature 
at the gas-liquid interface, is the dimensionless rate of vaporization (condensation). The term 
fl = ( a p v R / T ~ / : ) ( M w / 2 n R G ) ,  where a is an accommodation coefficient of order 1, Mw is the 
molecular weight and R~ is the universal gas constant. The term Do = 2/3(p/Pv) is the density ratio, 
where Pv is the vapor density. Equations [7], [8] and [9] are the balances of tangential stress, normal 
stress and energy, respectively. Equation [10], known as the kinematic condition, is the mass 
balance at the liquid-vapor interface. 

Following Williams & Davis (1982), the long-wavelength approximation is made, in which the 
small parameter is defined as the wavenumber q of the disturbances in the film. The above equations 
are rescaled by defining new variables: 

so that 

~ = q x ;  ~ = z ;  T = q t ,  [11] 

O O O 
= O(1) as q--.0. [12] 

O~' O~' Oz 
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Based on an order of magnitude analysis, the dependent variables are expanded as 

u = u o + q u  t + O(q2) ,  [13a] 

w = q[wo + qw~ + O(q2)], [13b] 

T = To + qTl + O(q  2) [13c] 

and 

1 
P = q [P0 + qPl + O(q2)] • [13d] 

When these expansions are substituted in the above equations, the leading order terms are 
given by: 

with 

Uo¢¢ - -  (Po + ~bo)¢ = 0 ,  [14a] 

(P0 + ~o)~ = 0, [14b] 

Uo¢ + Woe = 0 ,  [14c]  

T0~¢ = 0, [14d] 

=0 ,  u0=w0=0 ;  T 0 = l .  [14e] 

It is assumed that the surface tension varies along the liquid-vapor interface due to both 
temperature and surfactant concentration variations. An approximation, in dimensional form, is 
introduced: 

a(F,  T)  = a(Fo, To) + aT(T  -- To) +  r(r - to) ,  [15] 

where F is the surface excess concentration in mol per unit area of the interface and Fo is the 
surface excess concentration in equilibrium with the bulk surfactant concentration Co (known). 
In dimensionless form, [15] becomes 

S(F,  T)  = S(To) - Zr(T - To) - Z,r(F - 1), [16] 

where Z r =  ( - t r r  ATho)/(3pv2), Zr  = ( -arFoho) / (3pv2) ,  t rr= atr / d T  and trr = dtr /aF. With the 
long-wavelength approximation, the excess surface concentration is given as 

F = 1 + qF t + O(q2), [17] 

where "1" is the dimensionless average or initial surface excess concentration. 
In a similar way, the order q problem is given by 

UO. r "l" UoUo? ~ "{- WoUo¢ = Ul( ¢ - - P i e '  [18a] 

Pie = 0, [18b] 

Ul~ -{- Wl¢ = 0 [18c] 

and 

with 

T1¢¢ = 0, [18d] 

= 0 ,  U! = W 1 = 0 ;  T 1 = 0 .  [18e] 

The boundary conditions at the liquid-vapor interface are given as follows for [14] and [18]: 

~ = h ,  T o + K T o ~ = O  [19] 

and 

= h, T, + KTt ,  = 0, [201 

where K = k/(flho2) and k is the thermal conductivity of the liquid. 
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The parameter K is a measure of  the deviation from (thermodynamic) equilibrium. Thus, K ---, 0 
describes a situation, called "quasi-equilibrium" by Burelbach et al. (1988), in which the interfacial 
temperature is constant and equal to the saturation temperature. On the other hand, K ~ oo 
describes a situation in which no phase change takes place. Any case with K # 0 corresponds to 
non-equilibrium, i.e. the temperatures of  the liquid and gas at the interface are different from 
each other. 

Because of  its uncoupling from the equations of motion, the energy equation can be solved first 
to provide the temperature as 

and 

To = - ( h  + K ) - ~  + 1 

T I - - 0 .  

In view of these results, [7] and [8] yield: 

= h, u0e = 3~r(T0e + he To¢) 

and 

and 

and 

= h, J~/~0 - P 0  = 3,~hee; 

= h, Pl = 0; 

where/~0 is qDo, T,r and ~r and qZ r and qZr and g is q3S. 
The flow field, to a leading order approximation, is given by 

u0 = (P0 + ~,b0)e(½~ 2 - ~h) + 3Zr[h(h + K)-I]e~ 

and 

[21] 

[22] 

[23a] 

[23b] 

[24a] 

[24b] 

[25a] 

3 - I  2 wl =~ErE (u0¢lh)¢¢~ , [26b] 

where uoelh is the value of  uo¢ evaluated at ~ = h and E = ~hg/v. In solving for u~ and wl use of  the 
expression 

F l = E -Zuoe[ , [27] 

was made. The last equation is for a situation in which surfactant adsorption/desorption at the 
liquid-vapor interface is the rate-controlling process. Hirasaki & Lawson (1985) have shown this 
to be the case for surfactants used in generating foam in porous media. Surfactant transport for 
such systems (Levich 1962) is modeled in appendix B. 

The kinematic condition [10] can be written as 

h, + q -  ~Jo + (Uo + qUl)h¢ - (Wo + qw~ ) = O. [28] 

and 

Wo = - ( P o +  I 3 I 2 ~0)¢¢(g~ - ~  h)+½(Po+dPo)¢~2h¢-~Zr[h(  h +K)-1]¢~ 2. [25b] 

To get a similar solution to the q-order-approximation problem, it is assumed that the l.h.s, of 
[18a] is negligible. With this approximation, the flow field, to the q-order approximation, is given 
(appendix B) by 

ul = - 3ErE -I(u0¢lh)¢ ~ [26a] 
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With the flow field given by [25] and [26], [28] can be written as follows in the original x and t 
variables: 

h, + Jo + S(h3hxxx)x + A(h -thx) x + E~Do[h3(h + K)-3hx]x + KMoPr-'[h2(h + K) 2hx]~ 

+ 3Go {Sh3(hh (6) + 6hxxh .. . .  ) + A (h .. . .  - 6h -~h2x) 

+ E2oDoh3(h + K)-4[(h + K)hh . . . .  + 3 ( -h  + 2K)hgxx] 

+ ~KMoPr-~h2(h + K)-3hx[h(h +K)h  . . . .  + ( - 5 h  +K)h2x]+Terms containing h (2m+~)} =0, [29] 

where h (m) is the m-order derivative of h with respect to x, Jo=3AThoTo[h/(pv)= 
~ A ThoK ( h + K) -  t /(pv ) = Eo( h + K) - t, Eo = (k A T)/(pv 2 ), Mo = ( - a t  A T)/(2pvho~¢ ), Go = (-crr Fo)/ 
(2pvho~) and ~ is the rate of net adsorption of the surfactant at the liquid-vapor interface. The 
algebra involved in deriving [29] was checked with Mathematica (Wolfram 1988), a software 
package for symbolic and numerical calculations. 

The different terms in [29] can be identified as follows: the second term represents the 
mass gain/loss due to condensation/evaporation; the third term, the stabilizing effect of 
surface tension; the fourth term, the destabilizing effect of the van der Waals forces; the fifth 
term, the effect of vapor recoil; and the sixth term, the effect of thermocapillary flow; the rest of 
the terms which involve a product of G reflect the interaction of the convective flows due to 
temperature gradients (Pearson 1958) with the short-range forces and the convective flows due 
to surfactant concentration gradients (Sternling &Scriven 1959). Depending on the sign of AT, 
the equation applies equally well to evaporating (AT > 0) as well as condensing (AT < 0) films. 
Thus, the effects of temperature and surfactant concentration variations on the stability of the film 
can be separated from those for an isothermal, thin liquid film devoid of surfactant. Furthermore, 
in this approach temperature effects constitute a leading order correction to the isothermal pure 
liquid film evolution equation, while those of the surfactant comprise a O (q) correction to the same 
equation. 

For thin films associated with foams in porous media, following Falls et al. (1988), a low-bound 
estimate of the difference in (dimensional) temperature between the liquid and vapor phases is 
calculated according to 

A T =  ~pp ~(PL--Pv)= \ ~ p / ~ r p '  

where rp is the average pore radius. 
After rescaling of [29] with 

X =  x; 6 ) =  t, [31] 

and assuming that the mass gain/loss due to condensation/evaporation is negligible, the following 
equation is obtained: 

ho + (h3hxxx)x + (h-~hx)x + D[h3(h + K)-3hx]x + KM[h2(h + K)-2hx]x 

+ G {h3(hh(6)+ 6hxxhxxxx) + (hxxxx - 6h-lh2x)  

+ Dh3(h + K)-4[(h + K)hhxxxx + 3 ( - h  + 2K)h~x] 

+ 4KMh2(h + K)-3hx[h(h + K)hxxxx + ( -  5h + K)h2xx] + Terms containing h (2m+ o} = 0, [32] 

where D =(E~Do)/Ao, M =MoPr-l /Ao,  G =3/2(GoAo)/S o and h (m) derivatives now are with 
respect to X. With this rescaling the effects of surface tension and van der Waals forces become 
indistinguishable. 

Solutions to the free film problem have been presented in the literature for isothermal films 
only for cases of tangentially immobile interfaces (ulh = 0) and surface inactive solutes (V~a = 0) 
(Sharma & Ruckenstein 1988). 
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3. L INEAR STABILITY ANALYSIS 

Equation [32] governs long-wavelength interfacial disturbances on a static film for which h = 1. 
Because the disturbance amplitude is unrestricted, non-linear interactions can be included. In this 
analysis, terms quadratic in the disturbances are neglected. The linear theory provides the 
wavelength and growth rate of the most unstable disturbance, as well as a rough estimate of the 
rupture time at which the film attains zero thickness. It is a rough estimate, since linear theory does 
not apply when the disturbance amplitude becomes large. The linearized problem is obtained from 
[32] by substituting h = 1 + H(X,  69). The resulting equation is 

H o + GHxxxxxx + {1 + G[1 + D(K + 1)-3+ ~KM(K + 1)-2]}Hxxxx 

+[1 + D (K  + 1)-3 + K M ( K  + 1)-2]Hxx=O. [33] 

For similar problems, a weakly non-linear stability analysis was pursued by Sharma & Ruckenstein 
(1988) and a non-linear theory based on numerical solution of the complete film thickness equation 
was advanced by Burelbach et al. (1988). The same techniques can be applied to [32] to obtain a 
more accurate estimate of the rupture time. 

In linear stability analysis, a disturbance is decomposed into Fourier modes and the growth of 
the modes is investigated. To this end, the disturbance is given by 

H = Re[H 0 exp(coO + iqX)], [34] 

where co is the growth rate and q is the wavenumber of the disturbance. If  H and its derivatives 
are substituted from [34] into [33], we obtain the dispersion relation 

co = q2~Gq' - {1 + G[I + D(K + 1) -3 + 4KM(K + 1)-2]}q 2 

+ [ I + O ( K + I ) - 3 + K M ( K + I ) - 2 ] ] .  [35] 

A critical wavenumber, q¢, can be defined for which to = 0. Small disturbances grow for to > 0 
and decay for to < 0. In addition, the most unstable disturbance, (qM, COM), can be found by 
requiring that (dco/dq)lqM = 0. 

When no surfactant is present (G = 0), i.e. for an evaporating or condensing film of a pure liquid, 
[35] reduces to (Sharma & Ruckenstein 1988) 

09 = q2[1 + D(K + 1) -a + K M ( K  + 1) -2 - q2]. [36] 

Finally, for an isothermal liquid film with no surfactant present (G = 0, K--* oo), [35] reduces to 
(Williams & Davis 1982): 

co = q2(1 _ q2), [37] 

from which 

q c = l ;  qM-----2-1/2; COM=¼. [38] 

For the isothermal film with surfactant present the dispersion relation becomes 

co = q2[Gq' - (G + 1)q 2 + 1]. [39] 

Although linear theory is valid only for infinitesimal disturbances from the planar interface, its 
predictions are taken as rough estimates of growth rates up to film rupture. Similarly, the 
predictions are assumed to be valid for the snap-off case, i,e. the case in which the thin liquid film 
wetting the inside wall of a capillary grows to a thickness equal to the capillary radius, thus forming 
a lamella extending across the capillary. 

For films associated with foam in porous media, the rupture time, OR, is defined as the time 
at which the most unstable disturbance (qM, tOM), for at least one X value, yields 

1 + H(X, OR) = 0 [40a] 

or, in view of [34], 

1 - Re[Ho exp(toM OR)] = 0. [40b] 
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Similarly, the snap-off time, Os is given by 

1 + H(X,  Os)  = R 

o r  

1 + Re[Ho exp(co~ Os)] = R, 

where R is the pore (capillary) radius made dimensionless with the average 
thickness ho. 

The times of rupture and snap-off are then given by 

and 

[41a] 

[41b] 

or initial film 

1 
0 R = - - -  In Ho [42a] 

0) M 

Os= l _ _ l n R - 1  
C0M Ho , [42b] 

respectively, where H0 is the initial disturbance (< 1). 

4 .  R E S U L T S  

The theory presented above was used to calculate the stability of steam-foam in a reservoir. 
The average reservoir temperature and pressure were taken to be 100°F and 200 psia, respectively. 
This pressure corresponds to an average saturation temperature of 380°F. 

The initial film thickness, h0, was calculated from Bretherton's (1961) theory to be approx. 50 ~. 
Based on the above saturation temperature and the steam properties (Keenan & Keyes 1940), a 
transport coefficient for evaporation/condensation fl = 192,3261b/(ft2°Rday) was calculated. 
The degree of superheating or subcooling, AT, was calculated from [30] to be approx. 0.14°F. 
Finally, the dimensionless number Go, which provides a measure of the convective flow driven by 
the surface-tension gradient due to surfactant concentration variations, was taken to be equal 
to that measured by Hirasaki & Lawson (1985). Table 1 summarizes the numerical values of the 
various system parameters. 

In the calculations presented below, both the superheating or subcooling, AT, and the 
surfactant number, G, were varied. AT values spanned the range -100°F (high subcooling) to 
0°F (isothermal case) to 100°F (high superheating); G varied from 0 (no surfactant or inactive 
surfactant) to 1000 (tangentially immobile interface). The dimensionless superheating or subcooling 
is represented by E0. 

The easiest case to analyze is the isothermal liquid film with no surfactant present (Williams & 
Davis 1982). The film is unstable for disturbances whose wavenumber is 0 < q < 1. 

For the isothermal film with surfactant present, the dispersion relation [39] shows that the film 
is unstable for disturbances whose wavenumber is given by 

q2 > max{l, 1/G} or q2 < min{1, l/G}. 

Table  1. S team-foam paramete r s  

A T =  f rom [30] 0.14°F 
K = k / (ho2f l )  0.252 

Pr = v / x ,  Prand t l  number  15.5 
A o = An/ (6nhopv2) ,  dimens ionless  d is jo in ing pressure 5.2 x 10 -5 

S = o'0ho/3pv 2, d imens ionless  surface tens ion 0.392 
D O = 2 p / 3 p v  121.2 
E o = k A T / ( p v ) . )  1,1 × 10 -5 

M o = ( - - c ~ / O T ) A T h o / ( 2 p v r )  1.16 x 10 -2 
Go = ( -  8~ /OF)Fo/(2pvaho) 5 x 106 
D = EoS /Ao ,  differential  vapo r  recoil  number  2.82 x 10 -4 
M = Mo/(PrAo) ,  thermoeapiUary  n u m b e r  14.4 
G = ~(GoAo/S) ,  sur fac tan t  n u m b e r  995 
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When linear theory is applied to the case of  the non-isothermal liquid film with no surfactant 
present (Burelbach et al. 1988; Sharma & Ruckenstein 1988), additional effects appear. The 
perturbed liquid vapor interface is assumed to have a wavy shape with crests and troughs. When 
evaporation takes place, the rate of evaporation is greater at a trough than at a crest. This results 
in a force on the film interface (in a direction opposite to the evaporating flux) greater at troughs 
than at crests, i.e. vapor recoil is destabilizing for the film interface. For condensing films, the 
condensation rate is higher at a crest than at a trough. Thus, for condensing films, the force on 
the film interface (in a direction opposite to the condensing flux) is greater at crests than at troughs, 
i.e. the vapor recoil is again destabilizing. For evaporating films, the interfacial temperature is 
higher at troughs than at crests, resulting in surface-tension values lower at the former than at 
the latter. The resulting thermocapillary flow, for evaporating films, is from troughs to crests, 
i.e. destabilizing for the film interface. In an analogous way, in condensing films, temperatures at 
crests are higher than those at troughs and the resulting capillary flow is from crests to troughs, 
i.e. stabilizing. Thus, thermocapillarity, depending on the sign of  the temperature difference, AT, 
can be stabilizing or destabilizing. 

Application of  the dispersion relation [36] shows that, in the case of  a condensing film with no 
surfactant present, linear stability analysis predicts stability for all infinitesimal disturbances; 
similarly, in the case of  an evaporating film with no surfactant present, the film is unstable to 
disturbances with wavenumbers satisfying the inequality 

q < [1 + D(K + 1) -3 q- KM(K + 1)-2] t/2. 

The numerical value of the r.h.s, of  the above expression, for AT = 0.14°F, is 1.821. 
For the non-isothermal film with surfactant present, condensing and evaporating films are 

examined separately because of  their distinct behaviors. In thermal recovery of  oil with steam, both 
types of  films are possible; condensation occurs throughout injection stages or at injection sites and 
evaporation throughout production stages or at production sites. 

Figure 2a shows the marginal or neutral stability (o~ = 0) curves for evaporating liquid films with 
or without surface active material. As earlier discussed, in the absence of surface active material, 
evaporating films are unstable to disturbances with wavenumbers less than a certain critical 
wavenumber. It can be shown that, for G > 0, [35] has two positive roots, and this results in a 

1o 

~7 

t gl 
gl 

al  

101 

10 ° 

10-1 

10 -a 

G = 0.01; U 

m m ~ m  

~ G =  0 
- - -  , 

G = 0.01; L 

G = 1, 10, 103; U 

\ G = I ; L  
--m . . . .  ] ( - - - m  . . . . . . . . .  • 

X 
G = 10; L 

. . . . . . . . .  • . . . . . . . . .  • . . . . .  ~ ' ' ' 0  . . . . . . . . .  • 

G - 103;L 
I J I I I I I I I I [  I I I I I I I I [  ] [ I I I I I I I  I I I I I I J I 

10-6 10-s 10-4 10-a 10-a 
Dimensionless Superheat, E o 

Figure 2a. Evaporating films. Wavenumber (q) vs dimensionless superheat (E0) for varying surfactant 
effect (G). 
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neutral stability curve with two branches, an upper (U) and a lower (L). Evaporating films with 
surface active material present are unstable for 

q>qc.u or q<qc.L. 

For small G and small AT, qc.u is insensitive to AT variations; similarly, qc.L does not vary with 
AT for large AT. For small G and large AT, the upper branch of the neutral stability curve 
converges to the neutral stability curve in the absence of surface active material. For large G, the 
upper branch of the neutral stability curve, for the entire range of AT variations, overlaps with 
the neutral stability curve for the surfactant-devoid case. For large G, the lower branch of the 
neutral stability curve is insensitive to AT variations. It is clear that thermocapillary flow (its 
magnitude measured by the value of KM) has less of an effect on film stability than Marangoni 
flow (its magnitude measured by the value of G). It can be observed that as G increases, the region 
of stability (qc,L, qc.u) increases. As discussed before, for evaporating films, thermocapillary flow 
is from troughs to crests, i.e. has a destabilizing effect on the film. For these films, as a result of 
lower rates of evaporation at crests and thermocapillary flows from troughs to crests, the excess 
concentration of surfactant is higher at crests than troughs, thus resulting in surface-tension values 
lower at crests than troughs. The resulting Marangoni flow is in a direction opposite to that of 
thermocapillary flow, i.e. it has a stabilizing effect on the film. 

Figure 2b also shows that the neutral stability curves for isothermal and evaporating films 
in the presence of surfactant have two branches. For the isothermal case, the two branches 
meet at G = 1, which is a double root for [40a, b]. For G > 1, the lower branches for 
isothermal and evaporating films collapse into one curve, i.e. there is no AT effect on qc,L; this is 
not the case for G < l, where qc,L increases as AT increases. On the other hand, qc, u, irrespective 
of the G value, increases as AT increases; for a given AT, however, q~.u is independent of G. 
In general, as in figure 2a, as G increases, the stability region for evaporating films with surfactant 
present increases. 

Figures 3a and 3b show the marginal stability curves for condensing films in the presence of 
surfactant. In contrast to the evaporating film case, here neutral stability follows single-branch 
curves. For a given G > l, irrespective of the amount of subcooling A T, there is an instability region 
defined for q > qc. As G increases, the instability region increases. For condensing films, 
thermocapillary flows are from crests to troughs, i.e. they have a stabilizing effect. As a result of 
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Figure 2b. Evaporating films. Wavenumber  (q) vs surfactant effect (G) for varying superheat (E0). 
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Figure 3a. Condensing films. Wavenumber (q) vs dimensionless subcooling (E0) for varying surfactant 
effect (G). 

lower condensation rates at troughs and thermocapillary flows from crests to troughs, the excess 
surfactant concentration is higher at troughs than crests, thus resulting in surface-tension values 
lower at troughs than crests. The resulting Marangoni flow is now from troughs to crests with a 
destabilizing effect on the film. 

A few final remarks are due at this point. As discussed earlier, the results presented here 
were derived from a linear stability analysis for long-wavelength infinitesimal disturbances. 
Results for q >> 1 should be viewed with caution. The value of linear stability analysis lies in its 
ability to produce the marginal stability curve and determine the initial growth of infinitesimal 
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disturbances. The basic state of the film in this analysis consists of a planar interface (stationary 
and homogeneous state). Weakly non-linear (Sharma & Ruckenstein 1988) and non-linear stability 
analyses (Burelbach et al. 1988) based on solution of the full equation of film thickness evolution 
for isothermal and evaporating films in the absence of surfactant have appeared in the literature. 
In these analyses, the basic state of the film is again stationary but non-homogeneous. The 
aforementioned analyses demonstrate that the times of film rupture predicted by them vary from 
those predicted by corresponding linear analyses by as much as one order or magnitude. 

In the model adopted here, the rate-determining process for the surfactant is adsorption/ 
desorption at the interface; diffusion of surfactant in the bulk and surface diffusion are considered 
relatively fast when compared to the former. This eliminates the need for resorting to a vaguely 
defined and difficult to measure interracial viscosity. The rate constant of adsorption/desorption 
at the interface, ct, depends on both the bulk and the surface excess concentration. The effect of 
temperature on surfactant adsorption/desorption at the interface is not known and, therefore, 
neglected in this analysis. Note that in the analogous case of surfactant adsorption on the rock, 
the adsorbed amount is drastically reduced at elevated temperatures. Finally, the coverage of 
the gas-liquid interface by surfactant might suppress the mass gain or loss due to phase change. 
This effect is also not included in the present analysis. 

In conclusion, a new equation for the evolution of evaporating or condensing films with 
surface active solutes is presented. The new equation includes surface-tension gradients at the 
liquid-gas interface due to both temperature (thermocapillary) and surface excess concentration 
(Marangoni/surfactant effect) variations. The present model shows that, for systems of interest, 
Marangoni flows (Sternling &Scriven 1959) are stronger than thermocapillary flows (Pearson 1958) 
and act in the opposite direction. In view of these differences in stability characteristics between 
thin isothermal and non-isothermal liquid films, steam-foams need to be applied and modeled 
differently than "cold"-gas-foams in porous media. 
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A P P E N D I X  A 

We consider the liquid-gas interface to be a singular surface which contains no material but 
which allows material to be transferred through it. For the thin two-dimensional liquid films 
considered here the equation of the interface is 

h = h(x, t). [A.1] 

The unit normal and tangent to the interface vectors are given by 

¢ = (1 + h2) '/2' (I + ~),12 [A.2a] 

and (1 
t =  (1 +h])l/~'(1 4Sh]) In ' [A.2b] 

respectively. 
The principal curvatures of the interface are 

1 1 hxx 
R1 0; R~ (1 + h~x) 3/2" [A.3] 

The jump condition for mass at the interface (Slattery 1981), 

[p(u" ~ - w1(~))] = 0 [A.4a] 

where [a] = a v -  aL (av and a L represent the quantity a evaluated on the vapor and liquid side, 
respectively), u = (u, w) and w/( o = Dh/Dt = ht + uhx, becomes, for the system depicted in figure lb, 

[ p(w - h , -  uhx)] = J. [A.4b] 

The r.h.s, of [A.4b] is given (Palmer 1976) by 

J = fl(T - T,). [A.4c] 

The jump condition for linear momentum at the interface is 

[ p u(u" ¢ - wz(o) - T" ~] = 2Ha~ + Vttr, [A.5] 

with 2H = (1/Rl + 1/R2) and V~= (t x eta,-  z x ~t~,)/~ .(t x r) (Joseph 1976), where (~,t, x) is a 
right-handed coordinate system. With the assumption that the vapor density and viscosity are 
negligible when compared to the corresponding liquid properties, [A.5] written in terms of its 
normal and tangential component yields 

J2pv' - p  + 2/~[(1 - h2)wz - hx(uz + wx)] (1 + h~) -1 = ~rh~(1 + h~) -3/2 [A.6a] 

and 

-#[(u~ + w~)(1 -h2x)+Ehx(wz-ux)](1 +h2) -~ = trr(Tx + h~Tz)(1 +h~) -t/2, [A.6b] 

respectively. 
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Finally, the energy jump condition (Slattery 1981) 

[p(U + ½u2)(u'¢ - w/(¢)) + q '¢  -- u'(T'~)] = 0, 

with the assumption that the jump in kinetic energy is negligible, becomes 

J2 + k ( T , - h x T x ) = O .  

[A.7a] 

[A.7b] 

A P P E N D I X  B 

Following Levich (1962), the flux of  the surfactant at the interface is given by 

j = Vs" (Fu) = (Fu)x. [B. 1] 

If  the assumption is made that the rate-determining process is adsorption/desorption of  surfactant 
at the interface, this flux can also be written as 

dD 
j=A(co ,  F ) - D ( F ) , ~ A ( c o ,  F o ) - D ( F o ) - [ ( - ~ ) r o - ( ~ F ) r o ] ( F - F o ) .  [B.2a] 

The first two terms of  the r.h.s, cancel because of equilibrium F0 = Fo(co) and [B.2a] becomes 

j = - c t (F  - F0). [B.2b] 

With the proper non-dimensionalization (after dropping " ~ " )  and with the long-wavelength 
approximation 

u = Uo + qu~ + O(q2); F = Fo + qF~ + O(q2), [B.3] 

where dimensionless F0 = 1, [B. 1] and [B.2b] yield 

U0~ = - d ' l ,  [B.4a] 
where E = ath2/v and 

(uoF,)¢ + u~¢ = 0. [B.4b] 


